would also like to thank the Malaysian Government for research grant R\&D No. 190-9609-2801. SSSR and KC thank the Universiti Sains Malaysia for Visiting Postdoctoral Fellowships.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1299). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Rajamathe, S., Sethumadhavan, D., Surya Prakash Rao, H., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 1127-1128.
Sheldrick, G. M. (1996). SADABS. Program for Absorption Correction. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Structure Determination Softurare Programs. Version 5.10. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Surya Prakash Rao, H., Subba Reddy, K. \& Balasubramaniam, S. N. (1994). Tetrahedron Lett. 35. 1759-1762.

Acta Cryst. (1999). C55, 1522-1524
Intramolecular $\mathbf{N}-\mathbf{H} \cdots \pi$ (phenyl)
and intermolecular $\mathbf{C}-\mathbf{H} \cdots \pi$ (phenyl)
interactions in 5-amino-4-(4-methoxy-
phenyl)-2-phenyl-7-piperidino-1,6-naphthyridine-8-carbonitrile-benzene (2/1)

R. Thirumurugan, ${ }^{a}$ S. Shanmuga Sundara Raj, ${ }^{b}$ G. Shanmugam, ${ }^{a}$ Hoong-Kun Fun, ${ }^{b}$ V. Raghukumar ${ }^{c}$ and V. T. Ramakrishnan ${ }^{c}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025. India, ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and 'Department of Organic Chemistry, University Of Madras, Guindy Campus, Chennai 600 025, India. E-mail: rptm@cyberspace. org

(Received I February 1999; accepted 27 April 1999)

Abstract

The structure of the title compound, $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$-$0.5 \mathrm{C}_{6} \mathrm{H}_{6}$, has been determined from X-ray diffraction data. The compound crystallizes from benzene in the

triclinic system, space group $P \overline{1}$, with two molecules in the asymmetric unit. The naphthyridine ring system is almost planar and the six-membered piperidine ring adopts a chair conformation. Intramolecular N $\mathrm{H} \cdots \pi$ interactions are observed in the system with an $\mathrm{N} \cdots \pi$ (phenyl centroid) distance of 3.619 (3) \AA, and $\mathrm{C}-$ $H \cdots \pi$ interactions between the naphthyridine molecule and the solvent are also observed.

Comment

A number of 1,6-naphthyridine derivatives have been found to possess anti-inflammatory, anticonvulsant and insecticidal activities, and their physiological activity has been studied (Damon \& Nadelson, 1981, 1982; Takeuchi \& Hamada, 1976). They exhibit unique photophysical, photochemical and optical properties due to the charge-transfer interaction between the donor and acceptor substituents. They can behave as non-linear optical materials, which have various applications in the field of telecommunications (Murugan, 1997). The piperidine ring substituted at the seventh position of the 1,6-naphthyridine ring leads to pharmacological activity and is essential in the molecular structure of some important drugs (Lu et al., 1991). However, few structural data have been reported for these compounds (Balogh et al., 1986). For these reasons, the title compound, (I), was synthesized and its structure has been determined.

All the aromatic rings are planar with normal geometry and the piperidine ring, C, adopts a chair conformation. In molecule A, rings C, D and E make dihedral angles of $52.3(1), 10.3(1)$ and $63.8(1)^{\circ}$, respectively, with the naphthyridine system (rings A and B), whereas in molecule B, these angles are $29.2(5), 22.5(6)$ and $80.0(5)^{\circ}$, respectively. A ZORTEP (Zsolnai, 1997) plot of the two molecules in the asymmetric unit is shown in Fig. 1; the benzene solvent molecule, which is essentially planar and possesses usual geometry, has been omitted for clarity.

Amino $\mathrm{N}-\mathrm{H} \cdots \pi$ (phenyl) interactions have recently been theoretically postulated in model systems and experimentally described in globular proteins. It has also been suggested that such interactions may provide stability, contribute to the folding process and/or have a functional role in proteins (Levitt \& Perutz, 1988). In

Fig. 1. The molecular structure of the title compound (Zsolnai, 1997), with 30% probability displacement ellipsoids. H atoms and the benzene solvent molecule have been omitted for clarity.

Fig. 2. Packing of the A molecules and solvent viewed down the a axis and showing selected $\mathrm{N} \cdots \mathrm{H} \cdots \pi$ intramolecular and C $\mathrm{H} \cdots \pi$ intermolecular interactions. The cell is completed by a set of B molecules at ($1-x, 1-y, 1-z$). H atoms involved in these interactions are shown, but other H atoms have been omitted for clarity.
addition, the preferred geometry is one in which the N $\mathrm{H}(\mathrm{N} 11 A-\mathrm{H} 11 B)$ bond is perpendicular to the phenyl ring (C26A-C31A, centroid Cg1) plane, with the NH proton and the $\mathrm{CH}(\mathrm{C} 2-\mathrm{H} 2)$ proton of the solvent ($\mathrm{C} 1-$ C6, centroid Cg 3) directed towards the centroid of ring $E(C g 1)$ of molecule A and the proton at $\mathrm{C} 25 B$ ($\mathrm{C} 25 B$ H 25 B) directed towards the centroid (Cg 3) of the solvent (see Fig. 2 and Table 2). The interesting nature of such cooperative $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts and their possible utility as design elements in molecular recognition have been extensively discussed in several recent publications (Steiner et al., 1995). The details of the intramolecular and intermolecular hydrogenbond interactions ($\mathrm{N}-\mathrm{H} \cdots \pi, \mathrm{C}-\mathrm{H} \cdots \pi, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$) are comparable with the literature values (Steiner, 1998; Dastidar \& Goldberg, 1996) and are given in Table 2. These interactions stabilize the crystal packing.

Experimental

A mixture of p-methoxybenzylacetophenone ($1 \mathrm{~g}, 4.2 \mathrm{mmol}$), malononitrile $(0.55 \mathrm{~g}, 8.4 \mathrm{mmol})$ and piperidine $(0.71 \mathrm{~g}$,
8.4 mmol) in ethanol (25 ml) was heated to reflux for 10 h . The reaction mixture was concentrated under reduced pressure and purified by column chromatography over silica gel (100200 mesh). Elution with petroleum ether/benzene (1:1) gave the product as a pale-brown solid (m.p. $483-485 \mathrm{~K}$), which was recrystallized from benzene.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=474.57$
Triclinic
$P \overline{1}$
$a=9.6477$ (1) \AA
$b=14.9004(2) \AA$
$c=18.0803(3) \AA$
$\alpha=75.920(1)^{\circ}$
$\beta=84.206(1)^{\circ}$
$\gamma=75.546(1)^{\circ}$
$V=2439.01(6) \AA^{3}$
$Z=4$
$D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: none 18579 measured reflections 13284 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.183$
$S=1.073$
13284 reflections
649 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=1.45-33.18^{\circ}$
$\mu=0.081 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slab
$0.54 \times 0.40 \times 0.18 \mathrm{~mm}$
Yellow

8940 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=30^{\circ}$
$h=-13 \rightarrow 13$
$k=-20 \rightarrow 20$
$l=-25 \rightarrow 22$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0570 P)^{2}\right.
$$

$$
+1.2585 P]
$$

where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.341 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.229 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	1.329 (2)	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	1.323 (3)
N1A-C9A	1.359 (2)	$\mathrm{N} 18-\mathrm{C} 9 \mathrm{~B}$	1.360 (2)
C2A-C3A	1.404 (3)	$\mathrm{C} 2 B-\mathrm{C} 3 \mathrm{~B}$	1.405 (3)
C2A-C20A	1.490 (3)	C2B-C20B	1.492 (3)
C4A-C26A	1.496 (2)	C4B-C26B	1.499 (3)
$\mathrm{C} 12 \mathrm{~A}-\mathrm{N} 13 \mathrm{~A}$	1.143 (3)	$\mathrm{C} 12 B-\mathrm{N} 13 \mathrm{~B}$	1.145 (3)
C3A-C2A-C20A	121.35 (18)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 20 \mathrm{~B}$	122.01 (18)
C3A-C4A-C26A	116.30 (17)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 B-\mathrm{C} 26 B$	116.03 (17)
N14A-C7A-C8A	125.76 (18)	$\mathrm{N} 14 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	123.69 (17)
$\mathrm{N} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	177.3 (3)	$\mathrm{N} 13 B-\mathrm{C} 12 B-\mathrm{C} 8 \mathrm{~B}$	178.1 (3)
N14A-C7A-C8A-C12A		-12.3(4)	
C8A-C7A-N14A-C15A		160.2 (2)	
		-167.2(2)	
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 A-\mathrm{C} 26 \mathrm{~A}-\mathrm{C} 27 \mathrm{~A}$			
$\mathrm{N} 14 B-\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{Cl} 2 \mathrm{~B}$		-13.5 (3)	
$\mathrm{C} 8 B-\mathrm{C} 7 B-\mathrm{N} 14 B-\mathrm{C} 15 B$		164.4 (2)	
$\mathrm{C} 3 B-\mathrm{C} 2 B-\mathrm{C} 20 B-\mathrm{C} 21 \mathrm{~B}$			
$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 26 \mathrm{~B}-\mathrm{C} 27 \mathrm{~B}$		97.7 (2)	

Table 2. Hydrogen-bonding geometry ($\AA,^{\circ}$)
$C g 1, C g 2$ and $C g 3$ are the centroids of ring E of molecule A, ring E of molecule B and the benzene solvent molecule, respectively.

D - $\mathrm{H} \cdots \mathrm{A}$	H \cdots A	D \cdots A	$D-\mathrm{H} \cdots A$
$\mathrm{N} 11 A-\mathrm{H} \mid 1 \mathrm{~B} \cdots \mathrm{C}, \mathrm{C}_{1}$	2.80	3.619 (3)	159
C19A-H19A \cdots N13A	2.53	3.326 (3)	139
	2.87	3.777 (3)	155
C25B-H25B \cdots Cg $3^{\prime \prime}$	2.93	3.733 (5)	145
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 1^{\text {i'1 }}$	2.79	3.579 (4)	143
C15A-HI5B $\cdots \mathrm{N} 11 B^{\prime}$	2.68	3.461 (3)	138
$\mathrm{N} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A} \cdots \mathrm{~N} 6 B^{\text {i }}$	2.61	3.441 (2)	161
$\mathrm{C} 17 \mathrm{~B}-\mathrm{H} 17 \mathrm{C} \cdots \mathrm{O} 2 \mathrm{~A}^{\prime \prime}$	2.76	3.633 (3)	149

Symmetry codes: (i) $x, 1+y, z-1$; (ii) $2-x, 1-y,-z$ ((iii) $1-x, 2-y,-z$; (iv) $x, y-1,1+z$.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983, 1995).

SSSR thanks Universiti Sains Malaysia for a visiting Postdoctoral Research Fellowship and HKF would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R \& D No. 190-9609-2801.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1253). Services for accessing these data are described at the back of the journal.

References

Balogh, M., Hermecz, I., Naray-Szabo, G., Simon, K. \& Meszaros, Z. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 753-757.

Damon, R. E. II \& Nadelson, J. (1981). Chem. Abstr. 95, 7251 c .
Damon, R. E. II \& Nadelson, J. (1982). Chem. Abstr. 97, 92255 r.
Dastidar, P. \& Goldberg, I. (1996). Acta Cryst. C52, 1976-1980.
Levitt, M. \& Perutz, M. F. (1988). J. Mol. Biol. 201, 751-754.
Lu, Z. Y., Zaho, S. Y., Yuaw, X. M. \& Yang, Y. L. (1991). Chem. Abstr. 114, 815135.
Murugan, P. (1997). PhD thesis, University of Madras, Chennai, India.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cnyst. 28, 659.
Sheldrick, G. M. (1990). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Steiner, T. (1998). Acta Cryst. D54, 584-588.
Steiner, T., Starikov, E. B., Amado, A. M. \& Teixeira-Dias, J. J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1321-1326.

Takeuchi, I. \& Hamada, Y. (1976). Chem. Pharm. Bull. 24, 18131821.

Zsolnai, L. (1997). ZORTEP. An Interactive ORTEP Program for Structure Illustration. University of Heidelberg, Germany.

